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A new definition of concentration fluctuations in turbulent flows is proposed. The 
definition implicitly incorporates smearing effects of molecular diffusion and instru- 
mental averaging. A stochastic model of two-particle dispersion, consistent with this 
definition, is formulated. The stochastic model is an extension of Taylor’s (1921) 
model and is consistent with Richardson’s $ law. Its  predictions of concentration 
fluctuations are contrasted with predictions based on a more usual one-particle model. 

The present model is used to predict fluctuations in three case studies. For example 
(case (i) of 3 6), downstream of a linear concentration gradient we find ? = &m2(Z2 - A2). 
Here m is the linear gradient, Bis related to centre-of-mass dispersion and ATis related 
to relative dispersion (see equation (3.1)). The term & m 2 B  represents net production 
of fluctuations by random centre-of-mass dispersion, whereas & m 2 p  represents net 
destruction of fluctuations by relative dispersion. Only the first term is included in 
the usual one-particle model (Corrsin 1952). 

- -  

1. Introduction 
It is well known that pairs of particles released in a turbulent fluid tend, on average, 

to drift apart in consequence of random convection. Many turbulence phenomena can 
be understood in terms of the dynamics of these particle pairs; in the present work we 
shall be interested in describing fluctuations of the concentration of a dispersing 
passive contaminant via two-particle statistics. Our approach will be to postulate a 
stochastic model, similar to Taylor’s ( 1921) random-walk model for one-particle 
dispersion, which reproduces certain known statistical properties of two-particle 
dispersion. 

A need for mathematical description of concentration fluctuations arises in nu- 
merous applications including : prediction of air pollution; determination of reaction 
rates in turbulent chemical reactors; analysis of turbulent combustion; and simulation 
of ‘temperature noise’ downstream of non-uniform heat sources in turbulent flows. 
The fluetuations we shall be concerned with are those produced when an initially 
smooth distribution of contaminant is dispersed randomly by a turbulent flow. This 
is essentially a stochastic phenomenon. In  that vein, a stochastic model can be 
enlightening. 

Consider an initially small blob of contaminant in a turbulent fluid. At a later time 
there will be some probability of observing this blob a t  locations distant to its initial 
position. If a distant location happens to lie within the blob a positive concentration 
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is recorded; otherwise, there is zero concentration. In  this way concentration fluctua- 
tions are produced. This production of fluctuations is connected to dispersion of the 
blob’s centre of mass by large turbulent eddies - to a first approximation. 

?Ve say ‘to a first approximation’ because, if the blob is small enough, most of the 
turbulent kinetic energy will be contained in eddies larger than the blob. These eddies 
convect the blob without destroying its integrity. However, some of the turbulent 
energy will reside in eddies comparable in size to the blob. These will mix the blob 
with its environment, thereby decreasing its concentration. The concentration 
measured a t  a fixed location will depend on the degree to  which the blob has been 
mixed with the environment, as well as the probability of the point lying within the 
blob. The mixing process is stochastic, for it depends on the probability that turbulent 
eddies have mixed together two blobs (our initial blob and a blob from the environ- 
ment). Hence it depends on the dispersion of the blobs relative to each other. 

It is quite evident that a complete stochastic theory of concentration fluctuations 
needs to concern itself with relative dispersion. Below we give a brief, critical review 
of relative dispersion models. Attention is restricted to aspects relevant to the present 
modelling effort. 

Modelling relative dispersion 

The simplest model of relative dispersion appearing in the literature is Richardson’s 
4 eddy-diffusion model (Batchelor 1952). The $ law can be justified by inertial range 
scaling. Inertial range scaling is an important ingredient of a relative dispersion model. 

On the other hand, Richardson’s use of a diffusion equation is indefensible. An 
assumption tha% relative dispersion can be described as a Markov process underlies 
the use of a diffusion equation. In other words, it  is assumed that one can describe 
relative dispersion adequate1 y by consideration only of scales of particle separation 
large compared with those of eddies doing the dispersing. But, a t  small separations, 
eddies of size comparable to the separation of the particles are responsible for their 
relative dispersion (Csanady 1973, § 4.3): a diffusion equation cannot be justified when 
the particle separation is less than the turbulence integral scale. 

A different objection to Richardson’s $ eddy diffusivity was raised by Batchelor 
(1952). Denoting the random particle separation by A, Batchelor claimed that it was 
improper to have an eddy diffusivity proportional to the random variable lAl*; he 
suggested, therefore, that it be made proportional to the mean quantity m. I n  the 
light of our present understanding of the theory of stochastic processes, Batchelor’s 
argument seems specious; indeed, his form of diffusivity would imply that individual 
particle pairs were dispersed by ‘average eddies’, rather than by instantaneous 
random eddies as in Richardson’s model. 

Another diffusion model was proposed by Thiebaux (1975). His model is similar to  
Richardson’s, though more general. It could be considered a special case in which the 
present stochastic model becomes Markovian, as is shown in appendix B. 

Chatwin & Sullivan (1979), following several previous authors, considered a random 
linear-strain model of relative dispersion. Strictly speaking, this model is applicable 
only when particle separations are small compared to the Kolmogoroff microscale.? 

t To be fair, Chatwin & Sullivan nsed the random-strain model t o  illustrate ideas which they 
feel have wide application. 
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Chatwin & Sullivan found that in this regime molecular diffusion played an important 
role. 

When concentration fluctuations are measured experimentally the measuring 
devices usedi may average concentrations over several microscales, and this, together 
with the fact that molecular smearing also reduces fine structure, must have bearing 
on any practical model of fluctuations. How can we connect our ideas about random 
convection and relative dispersion of contaminant blobs with this need to model 
‘ smearing ’ processes ? 

To answer this question the connexion between relative dispersion concentration 
fluctuations must be quantified. A mathematical connexion between random particle 
paths, as described by the relative dispersion model, and concentrations, is provided 
by the statistical theory of dispersion. By delving into this theory we shall find the 
answer to the question raised in the last paragraph. 

2. Statistical theory of concentration fluctuations 
The body of this paper deals with a one-dimensional model; hence, in this section 

all equations will be written in their one-dimensional form. 
Consider parcels of some passive contaminant released into a turbulent flow. In the 

absence of molecular diffusion, these parcels conserve their concentration. Thus the 
mean concentration of contaminant observed at any point in the flow is simply the sum 
of the concentrations assigned to particles a t  their source, times the probability of 
these particles reaching the observation point: 

q z ,  t )  = J J P1(Z, t ;  2 ’ )  t ’ )  S(z’, t’) dz’ dt’ (2.1) 
--m 

(Monin & Yaglom 1971, $ 10). Here Pl(z, t ;  z‘, t‘) is the probability density function 
(p.d.f.) that particles leaving z‘ a t  time t’ arrive a t  z at time t .  The quantity S(z’,t’) 
is the source concentration. 

A similar line of reasoning leads to the expression 

for the two-point covariance. Here Pz is the two-particle p.d. f .  with an interpretation 
similar to Pl, though it depends on the simultaneous motion of .two particles (Monin & 
Yaglom, $24) .  Of course, 

PZfZl, z2,  t ;  z;, z;, t i ,  t;) dz; dt;; (2-3) 

(2.4) 

IS:-m Pl(Z1, t ;  4,  t;, = 

and 

P1(Z, t ;  z’, t’) dz’ dt‘ = 1. 

If Izl - z 2 )  is large compared to the Kolmogoroff scale, 11 = (v3 /e)$ ,  then P2 is deter- 
mined primarily by the ‘outer region ’ dynamics; i.e. by eddies of inertial range size 
or larger. (N.B. In this paper we refer to an ‘outer region’, with dimension on the 
order of the turbulence integral scale, L, and to an ‘inner region’ with dimension 

t In some applications - such as to pollutants which affect plants or humans - ‘instrumental 
averaging’ is not a technological limitation; rather, it is an intrinsic constraint. 
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FIGURE 1. Suggesting the structure of the function C ( z )  C ( z $ r ) :  with smoothing absent (solid 
line) ; and with the inner-region structure smoothed over the region V7 (dotted line). The ‘outer 
limit’ is marked by an arrow and the ‘inner limit’ is taken as 1. 

O(v) . )  Now, s ( z ,  t )  can be defined by letting zl, z2 --f z in ( 2 . 2 ) .  However (in the absence 
of molecular diffusion, a t  least), this limit will be discontinuous in the sense that the 
limit as Izl -z21 --f 0 in the outer region will not be the same as that in the inner region. 
(In the outer region Iz1-z2) + 0 means lzl - z 2 ) / L  + 0. I n  the inner region it means 
Iz1-z21/v + 0.) This is illustrated by figure 1 .  Because of smearing by molecular 
action or finite measurement-probe size, the definition o f 3  in terms of the outer limit 
should, in most realistic situations, be the more appropriate. We adopt this definition. 

Our definition of @can alternatively be obtained by averaging C(zl) C(z,) (dropping 
the time-dependence for convenience) over a region, V,,O(y): this makes its connexion 
with instrumental smoothing clearer. 

n n  

z /Im lim p2(z1, 2,;  z;, 2;;) ~ ( 2 ; )  ~ ( 2 ; )  dz; dz;. (2.5) 
- m  Iz,-z,l/L-+O 

The last step follows from the fact that  the outer limit is assumed to be a good approxi- 
mation to  the averaged inner region (see figure 1 ) .  With this definition understood, 
(2.5) can be written 

m - 
C y z )  = 11 P2(z; z;, 2;) S(Zi) S(z;) dzj, dz;;. (2.6) 

- m  

In  a slightly different context, Lamb (1976) proposed using (2.6) for prediction of air- 
pollution episodes. 
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Of course, averaging over some V, is not equivalent to  diffusive smoothing, although 
there is a loose connexion. Our definition really followsfrom an assertion that molecular 
diffusion makes the covariance (figure 1)  smooth a t  the origin, on the scale L. 

Figure I might be called our fundamental hypothesis: it therefore merits further 
discussion. The solid line illustrates the structure of C(z) C(z + r )  in the absence of 
molecular diffusion. The height and sharpness of the peak near r = 0 will increase 
with time as small-scale turbulent straining produces increasingly finer structure in 
the contaminant field - figure (79) in Monin & Yaglom ( 5  10.2) is a graphic illustration 
of this. Any contaminant with finite molecular diffusivity will not permit this peak 
to appear. Rather, the fine structure will be smeared by diffusion. If the contaminant 
does not diffuse by molecular action, the peak will appear and grow as just described. 
However, any measurement probe with dimension V, will produce a smearing effect 
similar to diffusion; although it will do instantaneously what diffusion does gradually. 

There are two assumptions implicit in figure 1 and the theory so far presented: (i) 
a V, exists such that L B 7 and (ii) smearing makes C ( z )  C(z+ r )  smooth a t  r = 0. 
Neither (i), nor equations (2.1) and ( 2 . 2 ) )  can be true unless (iii) the turbulent PBclet 
number, u‘LIK, is 9 1. Assumption (ii) can only be true if (iv) the Prandtl number is 
O( 1)  (or if a measurement device with dimension larger than 7 is used). The condition 
(iii) ensures that the large-scale structure of C ( z )  C(z + r )  is not significantly affected 
by molecular diffusion, while (iv) ensures that V,, or an effective V, in the diffusive 
case, will be large compared to the width of the peak. I n  these circumstances (i) and 
(ii) will, to a good approximation, be justified. Also, @ should then be reasonably 
independent of the dimensions of measuring devices. 

If the processes that smear the peak in figure I were ignored, then @ would be 
given by the inner limit of (2.2). We will refer to lim C(z) C(z + r )  as theusualdefinition 

of @, to  distinguish it from ( 2 . 5 ) ,  and because it has been used to define ?? by several 
authors (Corrsin 1952; Csanady 1973; Thiebaux 1975; Chatwin & Sullivan 1979). 
Since 

T / V - f O  

the usual definition of @ is 

P1(z; 2’) SZ(2’) dz‘ 
J - -m 

Equation (2.7) says that this usual definition does not inclnL3 turbulent mixing 
processes associated with relative dispersion: our new definition (2.6) does. It is easily 
proved that  relative dispersion reduces fluctuations. Particles one and two are in- 
distinguishable so the inequality 

together with (2.3) proves that 

(2.10) 

equality holding when S is identically constant. Taking c?? = @- cz as a measure 
of fluctuation amplitude, (2.10) shows that the present definition leads to  lower 
concentration fluctuations than the usual definition. 
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FIGURE 2. Illustrates dispersion by inertial eddies and our procedure for calculating the ‘inner 
limit’ of the two-point covariance. The dashed lines follow two particles, from their origins at 
2; and z;, as they are swept together, at z,  by turbulent eddies. This is what we call ‘mixing of 
blobs’. In calculations the particles’ paths are traced backwards from z to 2; and 2;.  In this 
reversed diffusion, particles are dispersed by turbulence. Hence in this figure relative dispersion 
and mixing are interchangeable: the distinction is only by the direction in which the dotted 
lines are traced. Initially, dispersion is effected by inertial eddies. Because of dispersion 
S(z;) + S(zL) mixing occurs and fluctuations are reduced, see (2.10). 

If S(z’) has a uniform value of N over the region V ,  and letting 
P 

(2.11) 

(2.8) and (2.1) lead to the familiar equation (Csanady 1973, cha. 7) 
- L  

c;2 G c; - 6 2  = N2(f-f”. (2.12) 

J. Foss and S. Corrsin (1979, private communication from Foss) have compared (2.12) 
with appropriate experimental data and found their experimental values of to be 
considerably lower than (2.12) suggests. Experimentally, then, (2.10) is also observed. 

Consider two particlea which have, a t  time t ,  some small but finite separation. 
Travelling backwards in time, their positions may at time t’, t’ < t ,  become very nearly 
independent. (See figure 2 and $6. Figure 2 shows why one wants to trace trajectories 
backwards in time: their final location is given while their initial positions are random.) 
The probability density function of particles 1 and 2 is Pz(z, t ;  z i ,  zb, ti, t i ) .  If mixing 
were to make z1 and z2 completely independent, then 

(2.13) 1 
PZ(Z, t ;  44, ti, t ; )  -+ PI@, t ;  z;, t ; )  t ;z; , t2 ,  

80, by (2.61, 
@+I72 

P-+ 0. 
and 

In this case turbulent stirring would eradicate fluctuations (in the sense of (2.5)). 
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Consider, again, our pair of particles a t  time t : for t’ close to t - or if turbulent mixing 
is very inefficient - their separation will remain small. P2(z;, z;1, t’) will be close to 
PI(z;,t’)6(zL-z;), so (2.8) and its consequence (2.12) will apply. Thus, (2.8) and (2.13) 
provide extreme limits for cT. In  general s w i l l  be intermediate to these values. 

The question posed near the end of $ 1  has now been answered: by defining the 
mean-square concentration fluctuation as the covariance between fluctuations at two 
points with separation larger than q (or, more correctly, o(L))  it is made to depend on 
relative dispersion, and smearing processes have been represented. If the dotted line 
in figure 1 is correct then it does not matter that  our definition of ??2 involves two 
points which, on the scale 7, are distinct. However, for modelling purposes it is quite 
important that these points be distinct, for then particles located at  them can be 
dispersed by inertial-range eddies. This is clarified by the following : When particles 
are separated by a distance A very much less than 7 a linear strain model gives 
dA/dt cc A for their relative velocity. If A + 0 as t -+ 0 then A = 0;  hence the signifi- 
cance of not letting A/q  +- 0. In  the inertial range dA/dt cc /A]+.  Thus [A1 cc t3 if 
A +- 0 as t + 0;  hence inertial range eddies can disperse particles even when A I L  -+ 0. 
In  figure 2 this dispersion is tied up with concentration fluctuations. 

To apply the theory described in this section a method for determining P2 and 
calculating its integral (2.6) is required. I n  $ 3  we formulate a stochastic model of 
relative dispersion for this purpose. After analysing this model in $ 3  4 and 5, its appli- 
cation to concentration fluctuations is illustrated in $ 6. 

3. Formulation of the stochastic model 
Consider two particles, a t  positions z1 and z2, being dispersed in a turbulent fluid. 

The velocities of these particles consist of a common part plus a relative drift. It is 
convenient, therefore, to formulate our stochastic dynamic model in terms of the 
variables 

These can be loosely thought of as centre-of-rnass ’ and ‘relative ’ co-ordinates. The 
42,  rather than 2, appears in the denominator of (3.1) for mathematical reasons which 
become clear later (see equations (3.5) and (6.16)). 

Extension of Taylor’s model 

Taylor (1921) proposed a model for the random velocity of a single particle in homo- 
geneous turbulence which (in the limit of his At -+ 0 )  is equivalent to the Langevin 
equation (Wax 1954): 

- Udt  
d U = -  +aw ( k r d w ;  U(t=O) = aWM 

TL 

Here 7; is the Lagrangian integral time scale, uw the r.m.s. fluctuating velocity (see 
Taylor 1921), dW, a Gaussian white noise process and JV is a mean-zero, variance-one 
(i.e. ‘standard’) Gaussian random variable. The letter U is used to denote velocity in 
(3.2) because the solution to (3.2) is commonly called an Uhlenbeck-Ornstein (UO) 
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vrocess. The UO process is a stationary Gaussian-Markov process with mean-zero 
and variance cw; hence, it has a correlation function 

(3.3) 

The particle position obtained by integrating U(t) with respect to t may be thought 
of as a correlated random walk, although a more apt terminology is random flight 
(Chandrasekhar, in Wax 1954). 

To extend Taylor's model to two interdependent, simultaneously dispersing, 
particles we postulate the model equations 

dZ/dt = [a(A) + P(A)] U(')(t),\ 

dA/dt = [a(A) -P(A)] Ti(z)(t).j 
(3.4) 

Here U(1) and U@) are independent UO processes (determined by (3.2) with two inde- 
pendent white-noise processes). The coefficients a and p have been made functions 
of A alone since in this paper we will be considering homogeneous turbulence. Their 
A-dependence will be determined below. This model is non-Markovian.? (In other 
words, the finite correlation time-scale of the turbulent velocity field has been taken 
into account.) 

An equivalent form of (3.4) is 

dz,/dt = aU'  +/3U",) 
(3.5) 

where 
U' = (U(1) + U(2))/42, 

U" = (UW- U@))/42. 

Note that, by the independence and Gaussianity of U(l)  and U@), U' (respectiveIy U")  
is an UO process, equivalent to U(l) or and independent of U" (respectively U ' ) .  

A physical interpretation of (3.5) is that aU' represents a contribution to  dz,/dt 
from eddies located near particle 1 and pU" represents a contribution from eddies 
near particle 2. Therefore, we must have 01 2 p. Only eddies near particle 2 of size 
comparable to, or larger than, A contribute to dz,/dt. Therefore, when A -+ 00, /3 -+ 0. 
Further considerations, which appear in appendix A, completely specify a and p. 
The specifications given there are 

where 

(3.7) 

The function R(A) is related to the structure function (Townsend 1976, p. l l ) ,  or 
covariance function of the turbulent relative velocity field. As A +  0, R(A) -+ lAl#, in 

In an appropriate phase space it is Markovian - see appendix B. This 'concealed' Marko- 
vianity simplifies the model, without losing the, physically necessary, non-Markovianity in 2, A 
space. 
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consequence of inertial range scaling, and, as A -+ CO, RlA)  -+ 1, because at large separa- 
tion particles move independently. The constraint a2+p2 = 1 ensures that the 
variance of the turbulent velocity is correct. 

We next seek analytic solutions to the model (3.4). Ultimately we will want to u8e 
an extension of this model to inhomogeneous turbulent flows, and this will require 
fully numerical analysis; but in the present paper attention is restricted to  the homo- 
geneous case, where partial analytical solutions can be found. Numerical results will 
also be given in 9 6. 

It is quite an easy matter to integrate the second of (3.4) and thereby to  obtain a 
particle separation p.d.f. This density function, in itself, has little meaning for us; 
because it deals with the distribution of particles. However, its moments will tell us 
something about the concentration fluctuations in which we are interested. 

4. Particle separation p.d.f. 

respect to t is a Gaussian random variable, 6, with mean zero and variance 
The UO position process obtained by integrating the velocity process, U ( t ) ,  with 

crz = 2g%T2(e-t/Tr,- 1 + t / w  
(Wax 1954). Let 

G(A) = (a(A’) -p(A’))-’dA’. LA 
If (3.4) is integrated it is found that 

Hence G(A) is a Gaussian random variable. The appropriate p.d.f. for A is therefore 

(4.3) 

The factor of (a-p)-’ is the Jacobian, IdtldAI), of the transformation: [ +, A. 
As A -+ co, G -+ A and a - p  --f 1 so that (4.3) becomes approximately Gaussian at 

large A. Thus, we recove1 the ‘ Batchelor-Obukhov ’ hypothesis of Gaussianity (Monin 
& Yaglom, 9 24.4); but the variance of this Gaussian distribution is not p! This is 
because Gaussianity only applies when A % L, where energy -containing eddies are 
active. When inertial range eddies come into play (A = o(L))  (4.3) departs from a 
Gaussian form. 

As A -+ 0, a-p -+ R* -+ JA/LI+; P ( A )  is therefore (integrably) infinite a t  A = 0. The 
‘perfectly correlated’ model (2.7) is more strongly singular a t  A = 0; while the 
‘uncorrelated’ model (2.13) is not singular. Hence (4.3) corresponds to  an intermediate 
degree of ‘ correlation ’ . 

We have mentioned the ‘ Batchelor-Obukhov ’ hypothesis above. Obukhov’s 
approach to relative dispersion (see pp. 571-573 of Monin & Yaglom 1971), like our 
own, was based on a stochastic model. A comparison of his and our approaches is 
made in appendix B. There i t  is suggested that his representation of dispersion is not 
correct a t  small separation. Hence, his Gaussian form for P ( A )  should not be correct 
as A / L  4 0. Furthermore, Obukhov’s model forces h2 to  vary as t3 (see § 5) by letting 
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the turbulence be non-stationary. Batchelor’s deduction of Gaussianity has already 
been criticized in the introduction. Our new p.d.f. could also be criticized; however, 
we believe it to contain more of the relevant physics than do other models. 

A solution for P(A)  was presented above partly because it reveals the nature of our 
model but, more importantly, partly because i t  enters implicitly into the following 
discussions of mean-square dispersion and concentration fluctuations. 

5. Mean-square dispersion 
A large amount of the literature on (one- and two-particle) dispersion deals with 

prediction of quantities like @ and @; the usual reasoning being that &(@+@) 
provides a measure of the dispersion of an ensemble of clouds of contaminant, while 
A2 is indicative of the dispersion of individual clouds. I n  the present application these 
quantities are related to the production of concentration fluctuations downstream of 
a source. Although we shall no6 do so here, well-known theoretical asymptotic values 
of p a n d  can be derived from our model. This fact suggests our model is a plausible 
interpolation between these limits. 

- 

The asymptotes which can be derived for our model are: 

lim (zi?/L2 =+9(2/.)4 (crx/L)3, 

17,-+0 \B/L2 = 2 (ux/L)2; 

pF = u: - O(LCTx), 

c 7 z - . + ~  I.@ = u;+o(Lux); 
lim 

here ux is given by (4.1). These asymptotic behaviours are those one expects (Monin & 
Yaglom 1971, 3 24). 

I n  Taylor’s (1921) one-particle model the mean moment of inertia of a cloud of 
dispersing contaminant was always equal to  u:. That model represented the cloud - - 
by a single dispersing 

As ux -+ 0, or uz -+ CQ 

particle. I n  our two-particle model the moment of inertia is 

to lowest order; but, because the cloud has finite spatial scale, higher-order corrections 
to this value (as given, e.g., by (5.1) or (5.2)) occur when ux is finite. Although these 
higher-order terms are not important for predicting mean concentrations (or other 
functionals of PI), they are required for prediction of concentration fluctuations: the 
next section shows why this is true. 

6. Concentration fluctuations 
I n  this section calculations of C, d 2  a n d z ,  via equations (2.1), (2.6) and (2.8)) are 

presented. The sources are instantaneous, of the form S(z,  t )  = S(z)  d( t ) .  Three pre- 
scriptions of S(z)  will be considered: (i) uniform gradient, S(z)  = mz; (ii) step profile, 

- -  
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X(z) = sgn (2); (iii) line source. We will present both numerical and analytical results. 
The following briefly describes how numerical calculations were performed. 

Numerical method 

Pairs of particle trajectories can be found by solving finite-difference versions of ( 3 . 2 )  
and ( 3 . 5 ) .  I n  the finite-difference approximation dW, is replaced by (AT)*xn, where 
t = nAT and (x,> is a set of independent standard Gaussian random variables. Thus, 
in finite-difference form 

with a similar equation for 22). (The (AT/TL)2 under the square-root sign in the first 
equation is a small term. It is required if the turbulence is to be strictly stationary 
(Durbin 1980).) Owing to the randomness, we experienced no difficulties with stability. 
We found that our results were independent of the magnitude of AT provided it was 
much smaller than TL. It was also found that centring a and p (i.e. replacing them 
by a,+) and ,I?,++ in (6 .1))  had no discernible effect on results. 

In  practice one solves for the initial positions of the particles, z ; ,  zh a t  time 0, given 
theirfinal positions, z1 = z2 = z a t  time t (see figure 2 ) .  This concept of reversed diffusion 
(valid in stationary turbulence) was introduced by Corrsin (1952). Having found z; 
and 26 one then assigns particles 1 and 2 the concentrations C(l)(z,t) = S(z;), 
U2)(z, t)  = S(zi) .  I n  this way C:)(z, t)  and Cg)(z ,  t),  for the nthparticle pair, can be found 

are computed a t  fixed ( z ,  t). Formulae ( 6 . 2 )  correspond to the statistical theory pre- 
sented in 5 2 .  

When statistics are computed from a sample of N particles they have an uncertainty 
of order N-4. Numerical results were obtained for large values of N (500 to 1000). 
Results for c and tended, therefore, to have fairly small relative uncertainties. 
c’2, on the other hand, often had significant uncertainty. Estimates of its standard 
deviation 

- 

10 PLM I00 
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N 9 1, have been included in figures 3, 6 and 7 with our numerical results. On the 
basis of the central limit theorem, f one standard deviation from delimits a 68 % 
confidence interval. 

Case (i): Initially uniform gradient 

If the source function in (2.1), (2.6) and (2.8) has uniform gradient, S = mz, then 
fluctuating concentrations will be expressed in terms of mean-square dispersion. 
Corrsin (1952) gave a one-particle analysis showing that the mean gradient is constant 
for all time 

dc/dz = m, (6.4) 

ch2 = m2crz. (6.5) 

and that c? grows according to - 

This follows e.g. from (2.8) if Pl(z = 0, 2‘) = ((27r)t crz)-lexp [ - z f 2 / 2 4  and S = mz‘. 
Next we derive cT as given by the present analysis. 

Substituting S = mz into (2.6) and setting z = 0, so that 6 = 0, 

The transformation (3.1) allows this to be rewritten in terms of A and 2: 

m2 - - 
c‘2 = Ejjm P2(z= O,t;A’,Z’)(Z’+A’)(Z’-A‘)dZ’dA’ =:-((zZ-P). (6.6) 

2 - -m 2 

Again, this formula connects fluctuations to mean-square dispersion; but now mixing 
between blobs of contaminant - the term - is included, as well as centre-of-mass 
dispersion. 

We find according to (4.1) and (6.5) 
- 
cL2 -+ 2m2aLTLt = o(t); 

while, according to (5.2) and (6.6), 

ch2 -+ m2O(LcrZ) = O(d) 

as t -+ 00. Thus, (6.6) predicts much lower levels of cx than does (6.5). As t -+ 0 
- -  
c’2 + ch2 -+ m2(gwt)2. 

Until now, we have described the phenomenology of our model in terms of ‘blobs 
of contaminant ’. Equation (6.6) can be alternatively described in Eulerian conceptions 
of ‘production ’ and ‘dissipation ’ of fluctuations. 

Eulerian interpretation. Our statistical theory and stochastic model follow what is 
commonly called the Lagrangian approach to dispersion. The alternative, Eulerian 
approach starts from the conservation equation 

ac 
at 
-+ + u . V C  = kV2c 

for contaminant concentration. It then follows that 
- 

- 2c‘w’m - ~ K V C ’  . Vc‘ 

P -  % at 
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(Csanady 1973, fj 7.5; the term V . u'c'2 is zero owing to  homogeneity) describes the 
evolution of 7 2 .  The term P represents production and E,  represents dissipation of 
fluctuations. It is interesting to  interpret Corrsin's formula (6.5) and formula (6.6) 
in terms of the symbols P and ec. 

As Corrsin himself noted, his formula (6.5) contains only the production term 
P = m2dcrz/dt: ec is zero. Similarly, the first term in (6.6) is the production 

- 

P = *m2d@/dt. 

(Note that, if h2 = 0, = 2cX, so thisis the two-particle analogue of Corrsin's formula 
for P.) However, e, is not zero in (6.6): it is equal to  #m2d@/dt. 

Because of its explicit form, ~ K I V C ' ~ ~ ,  the rate of dissipation, ec, is usually ascribed 
to destruction of small-scale gradients, which were produced by larger-scale motions. 
The present, Lagrangian, analysis does not represent these small-scale processes. 
However, they are rate-limited by the larger-scale processes which our analysis does 
describe. For this reason the rate of dissipation does not enter our Lagrangian analysis; 
but the analogue of net dissipation does. It is what we have described as mixing be- 
tween blobs of contaminant. Can the Lagrangian and Eulerian views be reconciled? 

When two particles such as those depicted in figure 2 come together they juxtapose 
contaminant parcels with a concentration difference 2s ma. I n  the present view, 
these particles approach to  within a distance of O(7)  of each other before molecular 
processes smooth them together. Thus gradients of O(mA/q)  are produced and the 
fluctuating dissipation rate is c: = 0(Km2A2/q2).  But, gradients are smoothed on the 
short time-scale q 2 / K  (short because q2/K < TL). 

The mean net dissipation is therefore 

which agrees with (6.6). The integration in (6.8) is over the time-scale q2/K, on which 
t is constant with respect to TL. - - 

If we let c, = e: = Km2A2/q2 and compute net dissipation from (6.7) we get 

In fact, this last integral is # ( ( ~ 2 ~ T ~ ) / ( ~ 2 / K ) ) ;  or, a factor of TLK/q2 larger than (6.8). 
The disparity between the Eulerian and Lagrangian estimates lies in the fact that  
dissipation appears continuously on the time-scale q 2 / K  but is intermittent on the 
scale TL (on which we are considering the evolution of c'2). One must take account of 
intemittency and revise the estimate of cc from Km2A2/q2 down to m2d@/dt. Only 
then can one recover (6.6) from (6.7). Below (6.6) its asymptotic behaviours were 
described. I ts  intermediate behaviour was found by numerical simulation. 

Numerical results. I n  figure 3 numerical evaluations of G/m2L2 and cT/m2L2 as 
functions of t /TL are presented. Here, and in all our calculations, we have used 
L = crwTIA. The upper solid curve in figure 3 is cz Although it was computed via the 
two-particle model (3.5),  this curve is practically identical with the value, (ax/L)2 ,  that  
Corrsin (1 952) predicted for z / m 2 L 2  using a one-particle model. Indeed, we have not 

- 

10-2 
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FIGURE 3. Comparison of 3 computed from various models: the upper solid curve is 2, com- 
puted via one-particle statistics ; the middle solid curve is c ’ ~ ,  the present two-particle definition ; 
the lowest solid curve is cT computed with a non-dimensional mean shear of 2.5. The dashed 
lines, about the middle curve, provide a 68 yo confidence interval for that curve. All curves are 
averages over 1000 particle pairs and initially the concentration gradient is uniform. 

- 

plotted (crz,L)2, as given by (4.1)) in the figure because it would obscure the numeric- 
ally simulated curve. 

In  the last paragraph of $ 5  it was remarked that the higher-order correlations 
introduced by the simultaneous dispersion of two particles are irrelevant when 
computing quantities dependent on the single particle p.d.f. In  our numerical modelling 
we have generally found that values of (? and cT(which depend only on 4) computed 
via the two-particle model (3.5) are indistinguishable from values computed via the 
simpler one-particle model 

dz,/dt = U ( t ) .  (6.9) 

Equation (6.9) is, of course, Taylor’s model for one-particle dispersion. That our two- 
particle model reproduces the one-particle model, in appropriate situations, is an 
adequacy of its formulation. 

The middle solid curve in figure 3 is p: the dotted lines around it are 68 % confi- 
dence intervals (cf. 6.3). As t/TL --f 0 ,  cI2 -+ cLz, as expected; while as t/TL -+ oo,? < z. 
Definition (2.6) does, indeed, result in lower fluctuations than (2.8). 

- -  

The upper solid curve in figure 3 is, according to (6.2)) 
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1-D contaminant cloud 

I ,  / / 

Mean shear Turbulent eddies 

,f J@) 
FIGURE 4. The effect of mean shearing on dispersion of one-dimensional clouds: In figure (a)  there 
is no shear and small eddies disperse particle pairs. In ( b )  mean shear separates particles enabling 
larger, more energetic, eddies to come into play. These larger eddies mix the cloud more effi- 
ciently, decorrelate particle positions and reduce concentration fluctuations. 

while the middle curve is 

Hence, values of or 
We have just seen that, in an unbounded fluid with uniform initial gradient, pro- 

duction of fluctuations can overwhelm dissipation so that p grows indefinitely. I n  
a bounded flow, or in the presence of (uniform) mean shearing this is not necessarily 
true. The case of mean shearing is treated below; applications of our model to inhomo- 
geneous, bounded flows will be described in a future paper. 

The effect of mean shearing. A further consequence of making c7 dependent on the 
correlation between particle pairs is that mean shearing will reduce p. In  Corrsin’s 
one-particle analysis mean shear has no effect. The present paper is restricted to homo- 
geneous turbulence so we consider a uniform mean shear. 

Mean shear increases the separation between particle pairs (see figure 4),  thereby 
helping to  decorrelate their random velocities. This, in turn, leads to  decorrelation 
between the positions - or, equivalently, to  increased turbulent mixing and to  re- 
duction of fluctuations (see (2.13)).  

The common approximation of ignoring streamwise turbulent velocity will be made 
and the mean x velocity U = yz used. Then the relative x displacement of a particle 
pair follows from 

can be obtained by adding or subtracting these curves. 

(6.10) 

and the solution to  (3.4) for A(t).  
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Very briefly, R of equation (3.7) must be replaced by a component of an isotropic 
correlation function for incompressible turbulence (Monin & Yaglom, 5 21 .a). Thus, 

(6.11) 

where 

The lowest solid curve in figure 3 is a numerical calculation with non-dimensional 
shear 7 = yL/g,, equal to 2.5; c=is reduced from its value when 7 = 0. 

As t + 0, -+ O(t“) < p, so that dispersion takes place initially as it would in the 
absence of shear. As t + co pairs of particles tend to move independently and their 
individual motions can be approximated by a Markov process (Monin & Yaglom, 
9 10.3). Thus, letting A M cW (2TL)4 W,, substituting into (6.10), integrating, squaring 
and averaging gives, to lowest order, 

(6.12) 
- -  

It follows that, as t --f co, A:/A2 -+ O(t2); so the effect of mean shearing dominates 
relative dispersion. Curiously A 2 +  A: --f O(t3) in both limits t + 0 and t -+ co! A 
similar result is described in Csanady (1973, 9 5.13): it may explain the prevalence of 
t3 behaviour in observational data on relative dispersion. 

We have not found the exact asymptotic behaviour of 3 as t -+ 00 in this case; 
but (6.12) and our numerical calculations suggest that  tends asymptotically to 
zero. Physically, this is because, on average, the mean shear causes larger separation 
between particle pairs so that larger eddies disperse them. These larger eddies can 
stir the fluid more efficiently, thereby reducing concentration fluctuations (see 
figure 4). 

Case (ii) : Step profile 

In  this case the source function is S(z) = sgn (2). The quantities and c d e p e n d  on Pl. 
We use the dictum (see above) that our two-particle model will closely reproduce the 
results of the one-particle model (6.9) for these quantities. Equation (6.9) is simply 
the classical UO model of Brownian motion (Wax 1954). Since dW,  is Gaussian white 
noise it follows that zl, being a linear summation of Gaussian noise, is also Gaussian. 
Hence 

- -  

exp [ - ( z  - z’)/~u:] P1(z;z’) = 
(2+ g x  

(6.13) 

Substituting (6.13) into (2.1) and equating S(z’) to sgn (2‘) gives 

- Because = 1, (6.14)implies 
cL2 = i -erf2(2/,/(2) vx). (6.15) 

A numerical calculation of C a t  the cross-stream position z/L = 2 is shown in figure 
5 along with the analytical formula (6.15). The numerical curve is quite erratic because 
S is discontinuous; but the numerical results agree closely with (6.14) : our didurn 
is obeyed. 
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FIGURE 5. Mean concentration at  z / L  = 2 as a function of time when the initial concentration 
is a step function. The smooth curve is the analytic solution (6.14) and the irregular curve was 
produced by averaging numerical simulations of 800 particle pairs. 

1 .o 
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2 4 6 8 10 12 14 16 18 20 22 24 

t l  TL - - 
FIGURE 6. cL2 (straight line) and c ’ ~  (irregular line) a t  z / L  = 0 as functions - of time when the 

initial concentration profile is a step function. The small t asymptote to  c ‘ ~  (6.18) and the 68 yo 
confidence interval (dashed lines) are also shown. 500 particle pairs were used to compute 
numerical statistics. 
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FIGURE 7. As in figure 6, but now z / L  = 2 and 800 particle pairs are used. 

We have also plotted (6.15) for comparison w i t h 2  (upper curves). 

- - 
At z /L  = O,t? e 0, ch2 = 1.  The numerical model, of course, also gives GI: = 1 ; as 

shown by the upper line in figure 6 .  The upper curves in figure 7 are (6.15) compared 
with numerical evaluations of c;“ (equation ( 6 . 2 ) )  at z/L = 2 .  

The one-particle model is quite tractable. Unfortunately, two-particle statistics 
are more difficult to treat. We revert to  the practice of analysing asymptotic behaviours 
and filling in details by numerical simulation. 

Substituting a step profile for S into (2 .6)  and noting that P2(4, 2;) = P2(zh, 2;) since 
the particles are indistinguishable, gives 

This can be re-expressed in terms of Z and A by noting that the Z,A co-ordinate 
system is obtained by rotating the zl, z2 system through radians (see (3.1)): 

= I-4/orn/A P,(z,t;Z’,A’)dZ’dA’. (6.17) 

The asymptotic behaviour of this last integral as t/TL + 0,  when z / L  = 0, can be 
shown to be 

c’2 = I - 0*5282(~,JL)% (6.18) 

This is compared, in figure 6, with a numerical simulation of 7 2  at z = 0. It, works 
reasonably well out to  t/TL - 3. 

-A 

- 
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If 2 is considered the squared fluctuation intensity which would appear in the 
absence of dissipation and z2 that which appears when dissipation is present then, a t  
z/L = 0, 

- -  
= Ch2-C'2 M 0.5282(UX/L)*, (6.19) l-7- 

when t /TL -+ 0. In  figure 6 this dissipation causes dramatic reduction of ex. 
As t /TL -+ 00 asymptotic analysis suggests that  c- tends t o  zero as (uX/L)-l, or as 

(t /TL)-f.  Thus, dissipation is capable, in this case, of eventually overwhelming 
production. 

a t  z /L  = 2 are compared. As t /TL -+ 0 both are exponentially 
small. When t /TL  crosses N 1 both start to  grow; c;" tends toward its asymptotic 
value of 1; cxfirst increases and then, as asymptotic analysis suggests, begins a slow 
descent toward zero. This slow descent is partially obscured by the noisiness of the 
computed statistics. 

The discontinuous profile for S generally produces quite noisy curves for F. In 
figures 6 and 7 the dashed lines are estimated 68 % confidence intervals: the time 
traces of 3 fill this interval. 

In  figure 7 3 and 

Case (iii) : Line source 

The theory described in $ 2  is designed for distributed initial sources. However, an 
analysis for line sources can be made by first assuming they have some finite size, 
6 9 7, and then letting 6 -+ 0. The analysis of this case is similar to that of case (ii). 

Let 

(6.20) 

and assume IS 
(6 .9) ,  to be 

ux. The mean concentration is found, from the one-particle model 

N 
2 

C = -{er f (1~-~/2 / (2)a~)+er f (d+2/1 / (2)~~))  

Equation (2.12) applies in the present case: substituting Nf = into it gives 
- 

' 2  = NG-@ cu 
or, from (6.21),  

(6.21) 

(6 .22 )  

s(z,  t )  is the intensity of fluctuations relative to the mean. Thus, according to the usual 
definition, at  z = 0 

(6.23) 
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Because a, $ 6 the relative fluctuation intensity grows as t i  when t/TL + 0 and as 
t i  when t/TL -+ 00. 

Now we proceed to analyse the two-particle model. After rearrangement, definition 
(2.6)) with S(z) given by (6.20), can be written 

An analysis of (6.24), which we omit for brevity, leads to 

Combining (6.21) and (6.25) gives 

(6.24) 

(6.26) 

or, on z = 0,  
syo, t )  = - 0.9 J2(L/2/(2) 6)+ - 1.  (6.27) 

Thus, with our new definition for @ the relative fluctuation intensity does not 
continue to grow as t -+ co, but attains the ‘equilibrium’ value (6.27).  In  fact, (6.26) 
indicates that s(z, t )  is a function only of the similarity variable 2/,/(2) ux and not of 
az itself; it does, however, depend on (L/6)*. Because of this &dependence we conclude 
that: ‘discussions of concentration fluctuations are useless unless they take account 
of the finite initial size of the cloud. (In particular there is no point in considering an 
initial point source.)’ (Chatwin & Sullivan 1979, p. 341). However, the present argu- 
ment leading to this conclusion differs from Chatwin & Sullivan’s. Their argument 
would lead to (6.23) in one-dimeneional dispersion; or to s depending on ux/6. 

7. Discussion 
What are the significances of the limiting conditions imposed in (6.25)? When 

S/L is not small departures from a self-preserving form may occur; however, we expect 
these to be minimal. (Of course, if 6/L  is not small the Q law (6.27) is not valid.) 
Rather, the finite magnitude of 6/L  will be important a t  an early stage when fluctua- 
tions are being produced. (6.26) applies only when fluctuations are decaying; but, for 
any finite-sized source, there is a time during which fluctuations are produced. This 
time increases as S/L increases. 

On the contrary, if G(J(2) &)lux is not small the self-preserving form will not yet 
have been attained. This is true even though the production stage may be completed. 
In  other words, we may be on an ‘elbow’ connecting the production stage to the self- 
preserving stage. 

Note that G(,/(2)S)/aw is the time-scale required for mixing between the conta- 
minant cloud and the environment (see equations (3.4) and (4.2)).  The ratio ux/aw 
is a time-scale for bulk turbulent stirring. Thus G(,/(2)6)/cx is an indicator of the 
probability that contaminant has not mixed with surrounding fluid, but has been 

t Strictly, this result assumes the further asymptotic limit A2 4 L2 or ( ~ / T L ) ~  6 1 ,  but it 
is approximately true at larger t. 
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bodily dispersed. As G( J(2) 6)/ux decreases the probability of mixing increases. 
When we speak of dissipation of fluctuations we are referring to this mixing with 
environmental fluid: the condition G( J(2) 6)/ux < 1 ensures that enough mixing has 
occurred for this dissipative process to  have reached an asymptotic stage. 

The limiting condition for (6.21) to be valid has a more straightforward inter- 
pretation. I n  the mean, contaminant is dispersed by bodily convection. The condition 
6/ux < 1 ensures that a blob has, on average, been convected several blob radii and 
hence that the dispersion mechanism has reached an asymptotic stage. 

Murthy & Csanady (1971) made measurements of s (z , t )  for dye plumes dispersing 
in Lake Huron. They concluded (see their figure 12) that  s was a self-preserving 
function of z /  J(2) uz and that s(z = 0) was independent of uZ. (In their experiments 
ux/6 varied by a factor of 2.) Qualitatively, these conclusions favour our new theory, 
(6.26), over the usual theory (6.22). 

Recent experiments by Gad-el-Hak & Morton (1979) on concentration fluctuations 
in an axisymmetric smoke plume dispersing in isotropic turbulence also produced a 
self-similar form for s(z, t). Their profiles of s(z/  J(2) ux) were qualitatively similar to  
those of Murthy & Csanady. I n  particular, both sets of data showed the exponential 
increase of s with increasing Iz /  J(2) uxl that  (2.26) predicts. 

Csanady (1967) has previously proposed a ,  self-preserving form for s(z, t). His 
proposal was based on a simple closure model for c 3 .  Csanaday did not include any 
explicit dependence of s on 6/L. One could argue, however, that  his undetermined 
parameter, a, is a function of (6/L)#,  such that a +. 0 as (6/L)t -+ 0. His figure 1 then 
agrees with our conclusion that s(z = 0) increases as (6/L)#. 

Appendix A. Specification of a and /3 in (3.5) 
The coefficients a and P must be specified so that our model reproduces known 

asymptotic limits. A heuristic argument leading to  forms of a and ,8 is given here; 
in $ 5  it was shown that the model does, indeed, reproduce the correct asymptotes. 

When A + 0 the two particles in equations (3.5) must have the same velocity so 
a(0) = P(0) .  Ifwerequirethat(dZ/dt)2 = 2a:whenA = Owefinda(0) = P ( 0 )  = 1/4(2). 
When A + 03, the particle velocities become uncoupled and behave as those of in- 
dependently moving particles, so a(03) = 1 and /3(.0) = 0. I n  both these limits 

and (A 1 )  seems a reasonable model constraint, no matter what value A has. Further 
justification for this constraint is given in equation (B 2 )  of appendix B. 

a2+P2 = 1 ;  (A 1) 

Now, were a and p constant, or were our model Markovian, then 

would follow from (3.5) and the fact that  U' and U" are independent and statistically 
identical. In  the present context a and p vary slowly on the time scale of the random 
velocity fluctuations, so (A 2 )  is a good approximation. Equation (A 2) relates 2aP 
to a velocity correlation function. When A = 0 
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therefore a convenient form for (A 2 )  is 

2&/3 = 1 - R ( A ) ,  
where 

dz, dz 

(dzq dzg)* 
R(A) = 1 - 2 

is called the ‘structure function’ (Townsend 1976, p. 11); 1 2 R(A) 2 0. The function 
R(A) represents the fraction of the mean squared particle velocity associated with 
relative drift: obviously R(0) = 0 and R(m) = 1 .  By (A 1) and (A 3) 

= +(1+(2R-R2)*),) 

p2 = $(1-(2R-R2)f) , j  
thus a 2 p. 

A feature of the model (3.5) is that  large-scale turbulence components evolve on 
the finite time scale, Tr,; while small-scale components, as embodied in .(A) and 
P ( A ) ,  adjust to values appropriate to the instantaneous value of A. If A is in the 
inertial range, 

R(A) = Ce*]A1*/(2&) ( =  structure function/2&, Townsend, p. 96). (A 5) 

Townsend gives C “N 22, when the present definition of A is used. With the semi- 
empirical formula 

e = A c $ , / L ,  A z 0.8 (A 6) 

(Townsend, p. 61),  where L is the turbulence integral scale, (A 5 )  becomes 

Equation (A 7 )  is an approximation when AIL -+ 0 and hence provides the proper 
‘outer limit’ of R a t  small A .  In  general, we need an interpolation formula between 
this limit for small A and the limit R(m) = 1; we will use 

Equations (A 8) and (A 4) prescribe a and p. In appendix 13 it is shown that these 
prescriptions are, in a sense, in accord with R,ichardson’s and Thiebaux’s diffusion 
models. 

Appendix B. Comparison with other models 

Models of relative dispersion proposed by Richardson, Thiebaux and Obukhov 
have been mentioned in the text. I n  this appendix these models are discussed in the 
context of the present model. 

Connexion with Richardson’s and Thiebaux’s diflusion models 

The stochastic model (3.4),  or (3.5), is non-Markovian because the UO process has a 
finite memory time. If TL is allowed t o  tend to zero, U ( t )  reduces to the white-noise 
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process, cr,,,(2TL)*dW,, and the model becomes Markovian. Of course, the limit T, + 0 
is trivial in the present context for, t o  be consistent, one should also let L + 0 in 
(A 8) so that, in this limit, the particles move independently (a  = 1 , P  = 0). For the 
sake of argument, L will be allowed to  remain finite. 

I n  the present context, a Markov process is equivalent to  a diflusion process. The 
‘diffusivity’ for the Markov process corresponding to (3.4) with U(t )  replaced by 

U,,,(2TL)* d W, is 

As lAl/L +- 0, K,, +- O( IAl%); hence a connexion between the present model and 
Richardson’s $ law. 

Corresponding to (3.5) one finds 

This is the f x m  of K proposed by Thiebaux, provided a2+P2 = 1 (equation (A i ) ) ,  
for the diagonal elements must be the (homogeneous) one-particle diffusivity. The 
term K,, parametrizes the correlation between velocity fluctuations a t  z1 and z,, as 
was remarked by Thiebaux (see (A 2 ) ) .  The diffusion limit of our model is a ‘trivial’ 
limit so it will not be pursued further. 

Comparison with Obukhov’s model 

We will use the present notations and numerical constants in this comparison. Readers 
unfamiliar with technical details of the theory of stochastic differential equations 
(Arnold 1974) may prefer to ignore this appendix. 

Obukhov’s model is one of ‘Markovian diffusion in phase space’ (Monin & Yaglom, 
S 24.4). This phase space is the two-dimensional (in the present context) space (A, V ) ,  
where V = dA/dt. The present model is also Markovian in the space ( A ,  U ) ,  where we 
have dropped a superscript 2 from U .  Obukhov presented his model in the form of 
the Fokker-Planck equation 

but the corresponding stochastic differential equations, 

dA/dt = V ( t ) ,  

are easily inferred. Compare (B 4 )  with (3 .2 )  and (3.4).  

(B 4) 

Two shortcomings of (B 4 )  - 

are readily seen: (i) the rate of decorrelation of the velocity fluctuations, - V/TL, 
has been set to  zero in the first of (B 4 ) ;  (ii) the rate of relative dispersion has been 
made independent of particle separation in the second of (B 4). Indeed, by (B 4 ) ,  V 
is simply the Wiener process crw(2/TL)f W, so = 2aLt /TL.  This is far from the 
stationary random velocity, U 2  = crL, of the Uhlenbeck-Ornstein process used in the 
present model. 

L 
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It does not seem, therefore, that  the proper physics are contained in (B 4): and, 
in this sense, it is fortuitous that, when the Wiener proceps V is integrated to find A, 
the t3 law, A2 = z t 3 / 3 T L ,  is obtained. One could not expect (B 4) to model higher- 
order statistics, or P(A) ,  correctly. In  $ 6  (see equation (6.10)) it is proposed that 
equations like (B 4) are a more appropriate model of the asymptotic form of relative 
(streamwise) dispersion produced by homogeneous turbulence in a mean shear flow. 

To complete our comparison with Obukhov the phase-space Fokker-Planck 
equation for (3.2) and (3 .4)  is given below: 

a a i a  2 a 2  

at TL au TL ( a w 2  - P ( A ,  V ) +  Ua[(cr(A)-P(A))P(A,  U)]- - -[UP(A,  U ) ]  = s - P ( A ,  77).  

(B 5 )  
This can be compared with (B 3) .  

The marginal distribution, 

(Wax 1954) for the UO velocity process follows from (B 5), as does the marginal 
distribution (4.3).  
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